

MONTEREY, CALIFORNIA

THESIS

Approved for public release: distribution is unlimited

A REALISTIC MODEL OF NETWORK SURVIVABILITY

by

Ozlem Ozkok

September 2003

 Thesis Advisors: Geoffrey Xie
 Alex Bordetsky

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: A Realistic Model of Network Survivability
6. AUTHOR(S) Ozlem Ozkok

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release: distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis focuses on evaluating network survivability and Quality of Service (QoS) in a network. There

have been studies on developing network survivability metrics; however, the implementation of these survivability
measures usually are based on unrealistic assumptions. This thesis has some experiment results based on
identifying all min-cuts of a network and computing survivability of the nodes based on these criteria.

The main contribution of the thesis is a novel approach to handling correlated or dependent component
failures. In a complex network, it is not trivial to compute the probability of failures of the nodes even if the
component failures are independent. With this new approach, network administrators could predict the optimal
nodes in a network under more realistic conditions. Java-based simulation programs are developed to evaluate the
approach. This project is motivated by network security problems in which a decision maker has to select nodes to
host critical information servers when there is an attack to the network. The solution will give the decision makers
criteria that would help them to make better decisions.

15. NUMBER OF
PAGES

63

14. SUBJECT TERMS Network Survivability, Network Attacks, Max Flow, Min-Cut,
Probabilistic Networks, Modeling Dependent Nodes, Graph Algorithms

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release: distribution is unlimited

A REALISTIC MODEL OF NETWORK SURVIVABILITY

Ozlem Ozkok
Lieutenant Junior Grade, Turkish Navy

E.E., Turkish Naval Academy, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

AND

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2003

Author: Ozlem Ozkok

Approved by: Geoffrey Xie

Thesis Advisor

Alex Bordetsky
Thesis Advisor

Dan C. Boger
Chairman, Department of Information Sciences

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis focuses on evaluating network survivability and Quality of Service

(QoS) in a network. There have been studies on developing network survivability

metrics; however, the implementation of these survivability measures usually is based on

unrealistic assumptions. This thesis has some experiment results based on identifying all

min-cuts of a network and computing survivability of the nodes based on these criteria.

The main contribution of the thesis is a novel approach to handling correlated or

dependent component failures. In a complex network, it is not trivial to compute the

probability of failures of the nodes even if the component failures are independent. With

this new approach, network administrators could predict the optimal nodes in a network

under more realistic conditions. Java-based simulation programs are developed to

evaluate the approach. This project is motivated by network security problems in which a

decision maker has to select nodes to host critical information servers when there is an

attack to the network. The solution will give the decision makers criteria that would help

them to make better decisions.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION AND OVERVIEW ..1
A. BACKGROUND ..1
B. SCOPE ..2
C. OVERVIEW...3

II. NETWORK SURVIVABILITY CONCEPT ..5
A. INTRODUCTION..5
B. CONCEPT OF SURVIVABILITY ..6
C. NETWORK CENTRIC WARFARE AND HOMELAND SECURITY.....7

III. CONNECTIVITY BASED SURVIVABILITY METRIC.....................................13
A. INTRODUCTION..13
B. DEFINITIONS OF THE TERMS USED IN GRAPHS AND

ALGORITHMS..13
C. CONNECTIVITY BASED SURVIVABILITY METRIC.........................14
D. COMPUTATION OF KE ..15
E. COMPUTATION OF MINIMUM CUTS (MIN-CUTS)16
F. ANOTHER ALGORITHM FOR ENUMERATING THE ALL

MINIMUM WEIGHT AND NEAR-MINIMUM S-T CUTS.....................22

IV. A HEURISTIC MODEL FOR DETERMINING THE SURVIVABILITY OF
THE CONNECTION...25
A. PE MODEL ..25
B. ASSUMPTIONS OF THE PE MODEL ...26

1. Validation of the Underlying Assumptions......................................27

V. A REALISTIC APPROACH FOR NETWORK SURVIVABILITY...................31
A. LIMITATIONS OF THE EXISTING FAILURE MODELS31
B. COMPUTING CORRELATED COMPONENT FAILURES31

VI. CONCLUSIONS AND FUTURE WORK...35
A. SYNOPSIS AND CONCLUSIONS..35
B. FUTURE WORK...36

APPENDIX. JAVA SIMULATION CODE ...37

LIST OF REFERENCES..47

INITIAL DISTRIBUTION LIST...49

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Military as a Network-Centric Enterprise..8
Figure 2. Architecture for NCW..9
Figure 3. Cooperative Engagement Capability (CEC)..9
Figure 4. Pseudo code for finding the maximum flow..15
Figure 5. Pseudo code for finding the min-cuts ..17
Figure 6. Example Topology-1 ...18
Figure 7. Edge-disjoint paths and Ke value of source node 0...18
Figure 8. Number of mincuts found in 120ms. ...19
Figure 9. Example Topology-2 ...20
Figure 10. Showing 4 edge-disjoint paths between 0 and 5..20
Figure 11. Number of Mincuts found in 300ms..21
Figure 12. Example topology – 3 ..23
Figure 13. Pseudo code for Pe computation..26
Figure 14. The graph used to verify Pe model ..27
Figure 15. s1 = 6 (source), t =0 (Destination) ..28
Figure 16. Shows the min-cut computation for s1 ...28
Figure 17. s2 =7 (source) and t=0 (destination) ...29
Figure 18. findProbability procedure pseudo code ...33
Figure 19. Example topology to verify java implementation of algorithm.......................34

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

ACKNOWLEDGMENTS

I would like to acknowledge Turkish Navy and Turkish Republic for giving me

such a good educational opportunity.

I would like to thank to my Mom, Guler Ortunc for the support she gave me

throughout my life. I would never be where I am if she did not stand by me my entire life.

Most special thanks to my husband, Murat Ozkok. The person who tries to

understands me most. He is my best friend. I can never forget all we've done for each

other, or all we've been through together.

I would also like to thank my advisors Prof. Geoffrey Xie and Prof. Alex

Bordetsky for their time, guidance and understanding during the whole research process.

Finally, I would like to dedicate this thesis to my beloved Mom, Guler Ortunc.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION AND OVERVIEW

A. BACKGROUND

Survivability is typically defined along the following lines: the ability to continue

to fulfill a mission even in the face of attacks and failures. The critical thing in this

definition is that it is impossible to stop all attacks and prevent all failures. “No single

component of a system is immune to failure or subversion.”[DIE01]

Network Survivability is critical to Network Centric Warfare. It is also an

important concern of homeland security because computers are part of the national

critical infrastructures and must have high survivability while facing terrorist attacks and

natural disasters.

The growth of the Internet has produced the emergence of a global information

society. Businesses can function internationally with great efficiency exchanging

information seamlessly across their supply chains. Governmental use of the Internet will

increasingly extend to international information sharing and collaboration. Perhaps the

greatest threat to the Internet is the security of so many systems connected to it. A lack of

security expertise by most of the Internet users results in vulnerabilities in the network

that can be compromised by motivated attackers.

There has been some studies on developing network survivability metrics,

however the implementation of these survivability measures usually require money, big

design changes to protocols and systems. As stated in [XIE02] Ellison provided a general

definition of network survivability in [ELL99] and described some solution approaches to

the problem. Another paper by the same authors defined a software engineering process

for designing survivability into application [MEA00]. Furthermore, some concrete results

are presented in some contemporary papers, e.g., [SUL99], [UMA01], [WEL00].

Nevertheless, their focus was still on how to make software agile to effectively detect and

react to system component failures and software errors. In [WEL00], a customizable

utility function is used to indirectly measure survivability of a system configuration from

the point of view of the system user. Jha and Wing proposed a formal framework based

on Bayesian networks for reasoning about the survivability properties of distributed

2

systems [JHA00]. The work was rigorous but the proposed algorithm was too complex

for large networks. Unfortunately, the studies that have been done on network

survivability so far are not mature enough and they lack quantifiable metrics.

To address this lack of a network survivability measure, a global connectivity

metric was developed in the thesis of another graduate student, Baris Aktop [AKT03].

This thesis contributed to the thesis work of Eng Hong Chua [CHU03], who developed a

heuristic for comparing the connection reliability of two nodes to a common destination

node when these two nodes have the same number of edge-disjoint paths to that

destination. The heuristic is based on estimating the probability of each of the nodes

being cut from the server given same number of link failures. This thesis includes some

experimental results based on identifying all min-cuts of a network and computing

survivability of the nodes based on these criteria.

B. SCOPE

In today’s competitive and dynamic information technology environment, there is

a need for IT security as an integral component of the IT architecture of enterprises. The

concept of “survivability metrics” and “security metrics” including test, evaluation,

criteria identification, quantification of strengths, risk assessment/analysis and other

related activities have been explored since 1995. However, these efforts have provided

neither generally accepted nor reliable measures for rating information systems’

survivability and security. Moreover, inconsistent terminology has complicated the

development of IT metrics, such as rating, ranking, quantifying or scoring measurements.

There are three questions that should be asked when quantifying network

survivability:

1. WHAT you need to measure (e.g. technical, system)

2. WHY you need to measure (e.g. comparison, description)

3. WHOM you are measuring for (e.g. Technical experts, decision makers)

This thesis is motivated by network security problems in which a decision maker

has to select between nodes to host critical information services when there is an attack to

3

the network. The goal of this thesis is to give the network administrators criteria that

would help them to make better decisions. These criteria can be used to develop

heuristics and perform network reliability analyses to understand and better protect the

networks.

The main contribution of the thesis is a novel approach to handling correlated or

dependent component failures. In a complex network, it is not trivial to compute the

probability of failures of the nodes even if the component failures are independent. With

this new approach, network administrators could predict the optimal nodes in a network

under more realistic conditions. Java-based simulation programs are developed to

evaluate the approach.

C. OVERVIEW

This thesis is structured into the following chapters:

Chapter II: Network Survivability Concept. Describe the concept of survivability.

Discuss the importance of network survivability in Network Centric Warfare.

Chapter III: Connectivity Based Survivability Metric. Define the basic terms of

the graph theory; describe the connectivity based survivability metric. Describe the

computation of the Ke metric and minimum number of cuts in a network. Introduce

another algorithm to evaluate ranking of the nodes in a network.

Chapter IV: A Heuristic Model for Determining the Survivability of the

Connection. Describe a heuristic model, called Pe, and discuss the assumptions of the

model. Validate and refine the heuristic model.

Chapter V: A Realistic Approach for Network Survivability. Introduce an

analytical model and algorithm to evaluate network survivability under more realistic

conditions.

Chapter VI: Conclusions and Future Work. Summarize the results from the thesis

and recommend future work.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. NETWORK SURVIVABILITY CONCEPT

A. INTRODUCTION

There has been a big improvement in network services as a consequence of

developments in networking technology and the Internet. Government agencies and

businesses are increasingly dependent on networked systems. The security of these

systems remains a big problem because of the transparency of the public networks.

Hardening of the information systems is never enough unless the systems are physically

isolated. As long as the networks stay connected, there is going to be people who would

like to attack them for various purposes.

Survivability is the capability of a system to fulfill its mission on time while

attacks, failures, or accidents are present [FIS99]. The term, mission, refers to high-level

organizational objectives and mission fulfillment can be evaluated by the results achieved

by the system in the context of operational conditions.

While robustness, normally associated with fault tolerance in networks has long

been an issue in providing service assurances in the presence of component failures,

survivability is a new concept in non military networks. It ensures that a system can

continue to deliver essential services even in the presence of attacks [CHU03]. Current

network architectures, such as that of the Internet, rely on sophisticated, stand-alone

routers. They are being overwhelmed with the introduction of the management functions

while coming under more aggressive threats.

In an integrated services network, quality of service (QoS) levels to individual

user sessions must be guaranteed. To ensure QoS, the network has to reserve resources

for a set of packets at particular routers. Additionally, an integrated services network

must support real-time applications that have stringent packet delay requirements

[XIE98].

This thesis focuses on the failures and survivability of mission critical servers that

deliver different network functions, such as resource management, routing, accounting,

network management and security. Such servers might include DHCP, DNS, or domain

controllers, among others

6

In summary, a heavy weight node in a network can be a performance bottleneck.

Therefore, responsiveness, scalability, and fault-tolerance are major concerns in a

network design from the survivability point of view.

B. CONCEPT OF SURVIVABILITY

The survivability concept covers a broad range of engineering areas, such as

security, fault-tolerance and reliability. Survivability research builds upon reliability

research to focus on recovery after a failure in the system while reliability research

assumes that failures can happen but that mission critical functions of the system must be

active despite the failures [YUR99]. One of the best examples of survivability research is

combat aircraft that can still fly even though they have experienced some extensive

system damage.

In the computer/ telecommunications infrastructure some part of a network is

always down due to attacks or failures. Network managers test and collect data to

understand why systems fail and to determine why some systems fail less or more than

others. This kind of reliability analyses assumes that failure events are independent (for

mathematical analysis). In this thesis, our goal is to compute the probability of failures of

the nodes, including dependent/conditional node failures given the dependencies and

probability of failure statistics.

Although the security and survivability approaches are different, they cannot be

separated. A security approach in a network tries to identify the holes, or vulnerabilities,

of the systems and harden them. Survivability ensures that a network performs its

functions in the midst of attacks or failures, while security ensures high system resistance

to attacks. For example, safes are traditionally classified according to how long they can

be expected to resist certain types of attacks, such as break-ins. In this example,

survivability of the safe is a decision criterion from the security point of view. Therefore,

when we analyze networks, we need quantifiable measures from both the security and

survivability points of view. [DIE01].

7

The design and evaluation of a survivable system requires consideration of

reliability and security, adaptability, efficiency, and cost-effectiveness. Nowadays,

markets tend to focus on minimalist solutions: just-in-time etc. As a result, systems tend

to be meta-stable and they eventually collapse. Robust solutions require more expensive

details. It is clear that the design and evaluation of survivable systems is hard. Even the

question of defining appropriate metrics is difficult. The author suggests that the more

appropriate approach is to focus on more realistic examples. This thesis defines

dependent node failures in a network and provides a method to compute them without

relying on tight assumptions.

C. NETWORK CENTRIC WARFARE AND HOMELAND SECURITY

As computer technology has become increasingly integrated into modern military

organizations, military planners have come to see it as both a target and a weapon.

Countries are developing and implementing cyber strategies designed to impact an

enemy’s command and control structure, logistics, transportation, and other critical

functions. As a RAND corporation study pointed out in the mid-1990s, the entry costs for

conducting cyber war are extremely modest [SHI01].

In a limited cyber war, the information infrastructure is the medium, target and

weapon of attack, with little or no real-world action associated with the attack. An insider

might place malicious software directly within the enemy’s network. Degrading the level

of service of the network may cause the enemy to use alternate routes, which may cause

additional vulnerabilities. Denial-of-service attacks would require different approaches

when there is no Internet access in the systems that are supporting critical, national

infrastructures. A failure of emergency services in major cities would not only result in

many people dying, but also would make people lose confidence in government, thereby

generating both physical and psychological effects.

Network Centric Warfare (NCW) is based upon the experiences of organizations

that have successfully adapted to the changing nature of their competitive spaces in the

Information Age. The centrality of the information and its potential as a source of power

is the source of the power of NCW. NCW gives a new framework for analyzing military

8

missions, organizations, and operations. Figure 1 shows the Military as a Network-

Centric Enterprise [http://www.dodccrp.org/NCW/ncw_chapter.htm, September 2003] It

shows the infrastructure that is expected to enable shared battle space awareness and

knowledge. The NCW framework will increase the tempo of operations, responsiveness,

and combat effectiveness. At the same time, it will lower risks and costs.

Figure 1. Military as a Network-Centric Enterprise

NCW is built around the concept of sharing information and assets. This is

enabled by networking battle space entities together. In NCW, capabilities for sensing,

commanding, controlling, and engaging are robustly networked. The source of increased

power in a network comes from the content, quality, and the timeliness of the information

flowing in the network. The structural or logical model of the NCW is given in Figure

2[CEB98]. There is a high-performance information grid that enables the operational

architectures of sensor grids and engagements grids. Sensor grids generate high levels of

9

battle space awareness quickly and synchronize awareness with military operations.

Engagement grids translate the awareness into increased combat power. The cooperative

engagement capability (CEC) combines a high-performance sensor grid with a high-

performance engagement grid. (See Figure 3)

Figure 2. Architecture for NCW

Figure 3. Cooperative Engagement Capability (CEC)

10

Virtual collaboration in the information domain has many operational benefits. In

the following three examples, these benefits are highlighted.

Example 1: New Relationships Between Commanders—Battle Command via

VTC

Old Way: Corps and division commanders travel across the battlefield to be in the same

place at the same time to plan ground operations.

Network Centric Warfare: Commanders interact via VTC, which results in a significant

reduction in planning time and elimination of travel time.

Value: Decreased planning time provides commanders with the operational flexibility to

enable their forces to rehearse, move-to-contact, re-supply, repair, or rest. The net result

is increased combat power.

Concept Status: Demonstrated by U.S. Army in operational exercises.

Example 2: Quality of Life

Old Way: Deployed forces communicate with families and loved ones via mail or

telephone, at infrequent intervals.

Network Centric Operations: Deployed forces communicate with families and loved ones

with increased frequency and timeliness via e-mail (potentially on a daily basis),

telephone, or VTC.

Value: Deployed war fighters are able to solve family problems in close to real time (e.g.,

finance), interact with their children, and experience their children's lives while they are

growing up. Worry goes down, morale goes up, and operational effectiveness remains at

a higher level over long deployments. Although, operational security must be closely

monitored and enforced to ensure missions are not compromised.

Concept Status: Operational.

11

Example 3: Distance Learning

Old Way: Units release war fighters to attend training or education events away from

their duty locations.

Network-Centric Operations: Education is provided to warfighters deployed with their

units via VTC or compact disk (CD-ROM).

Value: Manning levels are maintained and opportunities for education and training are

available to all deployed forces. Operational proficiency and morale increase.

Concept Status: Operational [http://www.dodccrp.org/NCW/ncw_chapter.htm,

September 2003].

For Network Centric warfare to work, the right data must be available to the right

people at the right time. For example, satellite imagery of a threat from a mobile Scud

launcher is important information. It needs to be accessible by the key planners and

attack pilots [LAW00].

There are many examples of cyber terrorists’ attacks recently. One of the stories

about these attacks focused on the Massachusetts Water Resource Authority (MWRA),

the agency that controls water for much of eastern Massachusetts [DES02]. A cyber

intruder can easily exploit the computers that control the flow of water. However, even if

a hacker penetrates its network, the MWRA has a multitude of checks that ensures

contaminated water never reaches people. Preventing physical harm caused by a cyber

attack is easier than protecting valuable data from cyber attacks. Experts agree that the

most harmful cyber attack threat is the one that combines these two intended results.

One expert, Mark Fabro, president and chief scientist at Terrosec Corporation, a

security consulting firm in Toronto, says it might be possible to identify not only the

principle components of the network that controls the national power grid, but also the

physical location of these components. In that fashion, a cyber terrorist would either

know which network components to attack or where the most exposed vulnerability

exists for physical attacks. “That kind of information, combined together, could be used

to devastate elements of the critical infrastructure,” Fabro says.

12

The National Infrastructure Protection Center, an organization charged with

protecting critical U.S. infrastructure, in January 2003 issued a bulletin warning that a

computer, owned by an individual with ties to Osama bin Laden, contained information

about the structural engineering of dams and other water-retaining structures [DES02].

The bulletin said law enforcement agencies had "received indications" that other Al-

Qaeda members were interested in water supply and waste management practices and

were culling information about insecticides and pest control practices from several Web

sites. (See: http://www.nipc.gov/publications/infobulletins/2002/ib02-001.htm,

September 2003) The government is making a concerted effort to ensure that its own

Web sites don't offer any assistance to terrorists. On March 19, the Bush administration

went so far as to order all government agencies to remove from public view any

information on "weapons of mass destruction, as well as other information that could be

misused to harm the security of our nation and the safety of our people."[DES02].

There are other examples of attacks against information systems. In south Florida,

a hacker was able to break into local government systems and divert 911 calls to a local

pizza parlor. In Houston, Texas, FBI officials caught a hacker before he could insert a

worm into computers that would have resulted in the widespread shutdown of 911. And

in 1997, a young hacker shut down communications at an FAA tower in Worcester,

Massachusetts, for six hours. These attacks are not limited to the continental United

States, as NATO servers were shut down for several days during the 2000 bombing

campaign in Serbia and Kosovo.

These examples underscore the necessity that network designs integrate notions of

robustness and survivability in the hosting of critical missions. At the same time,

contingency plans are required for the recovery of critical roles. Therefore, a solution for

networks that will make them operate efficiently and safely is proposed

13

III. CONNECTIVITY BASED SURVIVABILITY METRIC

A. INTRODUCTION

In this thesis the author focused on a connectivity-based survivability metric

developed in [AKT03] and evaluated the heuristic developed in [CHU03], which is used

for comparing the connection reliability of two nodes to a common destination node

when these two nodes have the same number of edge-disjoint paths to that destination.

The heuristic is based on estimating the probability of each of the nodes being isolated, or

cut, from the server given some number of link failures. This thesis provides some

experimental results based on identifying all min-cuts of a network and computing

survivability of the nodes based on these criteria.

Two criteria were used to compare and rank the nodes of a network:

1. Network survivability metric based on the edge-connectivity factor (Ke).

2. Probability of failure of a link given Ke number of edge failures.

These criteria are investigated for a given node collection in sequence. That is, if

two nodes have the same value for Ke, then the second criteria is examined.

During the research, this heuristic was validated and refined. Given Ke number of

failures, the nodes in a network can always be ranked, as mentioned in Section C of this

chapter. The definitions and formulas used to calculate this connectivity-based

survivability metric are provided below.

B. DEFINITIONS OF THE TERMS USED IN GRAPHS AND ALGORITHMS

A network is modeled using a graph consisting of nodes representing

communications centers and edges representing the links between communication

centers. A graph G, which is denoted by (V, E) consists of a set of nodes or vertices, V,

and a set of edges, E. Each element of E is an unordered pair (vi, vj), where vi and vj are

elements of V.

A graph is called undirected graph if it consists of undirected edges. A loop is a

set of one or more sequential edges that originates and terminates at the same node.

14

A Path is a walk in which all edges and all vertices on the walk are unique, except

that the first and last node may be the same. Edge-disjoint paths are paths with no edges

in common. Node-disjoint paths are paths that share no common nodes other than the

source and destination nodes.

A cut-set is a set of edges whose removal disconnects the graph. A minimum cut-

set, or min-cut, is a cut-set that contains the fewest possible number of edges which when

removed disconnects the graph.

C. CONNECTIVITY BASED SURVIVABILITY METRIC

To find the most optimal location (node) for the server in a network, the clients

must be offered reliable connectivity to the server. The probability that a client will

survive a number of edge failures is dependent on the order of the edge-disjoint paths

between server and the client. The greater the number of edge-disjoint paths between the

server and the client, the better and more reliable the connection is. In order for the path

between a node and a server to be non operational, there must be at least as many edge

failures as there are edge-disjoint paths (Ke) between the two.

For example, if an assessment of the robustness of the connectivity between two

nodes and a third node is going to be done, looking at the Ke can be a good start to the

decision process. However, the Ke of the two nodes might be equal. In that case, finer

granularity in computing the connectivity of the nodes is necessary. The second criteria,

the probability of a node being disconnected given Ke number of edge failures, should

then be examined. This probability is given in Equation (1) [XIE02].

failure}edge{ifailure}Pedgei|1d){cut(s,P1}d){cut(s,P
E

),(Ki
rrr

e

∑
=

===
ds

 (1)

When two nodes, for example s1 and s2, have the equal Ke values, the comparison

is done by } failureedge |1}d),{cut(sP 1r eK== and

15

} failureedge |1}d),{cut(sP 2r eK== values. The location with the smaller probability

has a higher survivability.

D. COMPUTATION OF KE

In a network, the maximum flow value, when unit weights are assigned to all the

edges in the graph, is equal to the Ke value. There are different algorithms to compute the

maximum flow in a network. An open-source, Java-based algorithm platform (JGAP)

was downloaded from http://im.ncnu.edu.tw/~tsai/definite/JGAP/ JGAP.html, September

2003. Finding Ke by Ford-Fulkerson’s maximum flow algorithm was implemented in

Java by Baris Aktop [AKT03]. The pseudo code for this algorithm is given in Figure 4.

Figure 4. Pseudo code for finding the maximum flow

The complexity of this maximum-flow algorithm is O (N |E|2), where N is the

number of vertices and E is the total number of edges in the graph. The algorithm uses

16

augmenting paths to find a path of positive capacity from the source node to the

destination node and adds it to the flow. This adding continues till no more augmenting

paths are found in the graph. The output of the algorithm is the flow variable, which

contains the summation of flow capacities of all augmenting paths. Breadth-First Search

(BFS) is used in the maximum flow algorithm to find augmenting paths because it

ensures the paths chosen are of minimum length.

E. COMPUTATION OF MINIMUM CUTS (MIN-CUTS)

As noted, if the Ke values of nodes under consideration are equal, looking at the

conditional probability of connectivity failures for the nodes, given Ke, might be a second

criterion to break the tie. To compute this probability, it is necessary to find out the

number of min-cuts between the server and the client.

There are critical edges that have no alternate paths between a source and the

destination nodes. Removal of these critical edges will cause the path between source and

destination to be disconnected. The more critical edges that exist in the path to a node

being considered the lower the survivability of the connectedness of that node. The

number of critical edges determines the number of min-cuts in a graph. The pseudo code

for the algorithm to enumerate them is given in Figure 5. Currently, there is no known

algorithm that is able to solve all types of graphs in polynomial time. The complexity of

the algorithm is O (EKe).

17

Figure 5. Pseudo code for finding the min-cuts

Figure 6 shows an example graph. The source is Node 0 and the destination is

Node 5. Figure 7 shows the edge-disjoint paths in different colors. The Ke, which is the

edge-connectivity of Node 0, is 2. Figure 8 shows in how many milliseconds the

algorithm was able to identify the min-cuts.

Enumerating all min-cuts in a graph is an NP-hard problem and is not likely to get

solved in polynomial time, depending on the graph topology. The proposed algorithms

were able to identify all min-cut sets in polynomial time for certain type of graphs.

In Figure 9, there are 4 edge-disjoint paths between Node 0 and Node 5. The Ke

value for the Node 0 is 2 and 16 min-cuts were enumerated by the algorithm in 300ms, as

shown in Figure 11.

18

Figure 6. Example Topology-1

Figure 7. Edge-disjoint paths and Ke value of source node 0

19

Figure 8. Number of mincuts found in 120ms.

The number of min-cuts in Figure 8 is identified as follows:

There are 4 Min-cut sets : (0 , 6) (0 , 7) (5 , 6) (5 , 7)

Edge 0 is between Vertex 0 and Vertex 1

Edge 5 is between Vertex 4 and Vertex 5

Edge 6 is between Vertex 0 and Vertex 6

Edge 7 is between Vertex 6 and Vertex 5

20

Figure 9. Example Topology-2

Figure 10. Showing 4 edge-disjoint paths between 0 and 5

21

Figure 11. Number of Mincuts found in 300ms.

The number of min-cuts in Figure 11 is identified, as follows:

There are 16 Min-cut sets : (0 , 1 , 2 , 3) (0 , 1 , 2 , 7) (0 , 1 , 3 , 6) (0 , 1 , 6 ,

7) (0 , 2 , 3 , 5) (0 , 2 , 5 , 7) (0 , 3 , 5 , 6) (0 , 5 , 6 , 7) (1 , 2 , 3 , 4) (1 , 2 , 4 , 7) (1 , 3

, 4 , 6) (1 , 4 , 6 , 7) (2 , 3 , 4 , 5) (2 , 4 , 5 , 7) (3 , 4 , 5 , 6) (4 , 5 , 6 , 7)

Edge 0 is between Vertex 0 and Vertex 1

Edge 1 is between Vertex 0 and Vertex 2

Edge 2 is between Vertex 0 and Vertex 3

Edge 3 is between Vertex 0 and Vertex 4

Edge 4 is between Vertex 1 and Vertex 5

Edge 5 is between Vertex 2 and Vertex 5

22

Edge 6 is between Vertex 3 and Vertex 5

Edge 7 is between Vertex 4 and Vertex 5

In graphs like that in Figure 11, when the numbers of nodes on the paths increase

and the number of edge-disjoint paths increases, assuming no cross-paths between them,

as shown in the topology in Figure 12, the total number of min-cuts is nKe , where (n-1) is

the number of nodes that exist between the source and destination on an edge-disjoint

path. This makes the time to enumerate all min-cuts grow exponentially with the number

of Ke.

F. ANOTHER ALGORITHM FOR ENUMERATING THE ALL MINIMUM
WEIGHT AND NEAR-MINIMUM S-T CUTS

Because of the complexity of the algorithm given in Figure 5, the Java program

given in [AKT03] was not suitable for large network topologies. Therefore, a second Java

implementation for enumerating all min-cuts in a given graph was used to run the

simulations. The Java code is detailed in [WOO00].

Briefly, this enumeration algorithm is based on a recursive “inclusion-exclusion”

method. The algorithm identifies a min-cut by finding the maximum flow, using Ford-

Fulkerson’s maximum flow algorithm, in the network and then partitions the space of

minimal cuts by attempting to include and exclude specific edges. In this algorithm, if the

network edges have different integer weights assigned, by setting the variable e greater

than zero, near-minimum weight s-t cuts can be found, too. A cut is a “near-minimum” if

its weight is less than the product of (1+e) and the minimum cut weight, for some e = 0.

The complexity of the algorithm for finding only minimum cuts (when e = 0) is O

(f (|V|, |E|) + |V||E||C0 (G)|) where f (|V|, |E|) is the complexity of solving a maximum flow

problem on G = (V, E) and C0 (G) is the set of minimum cuts in graph G. The worst-case

complexity of the algorithm for near-minimum cut enumeration remains unknown when e

> 0.

23

In this project, the topologies shown in Figures 6 and 9 were given as inputs to the

Java program and simulation results were obtained in 80ms and 50ms respectively. It was

observed that enumerating all min-cuts by this algorithm was more efficient than the one

described in Section 5. Since all the graphs used as examples in this paper had edge-

weights of one, near-minimum cut enumeration was not tested. More results can be

found in [WOO00].

Neither of the Java implementations used to simulate the various types of graphs

were able to complete running with 1 node, which is 2 links, on an edge-disjoint path

between the source and destination where 40 edge-disjoint paths were discovered. This

makes the number of min-cuts to evaluate 240, which is more the a trillion min-cuts.

 (1, 1) (1, n-1)

 (2, 1) (1, n-1)

s t
 .
 .
 .
 .
 (Ke-1, 1) (Ke-1, n-1)

 (Ke, 1) (Ke, n-1)

Figure 12. Example topology – 3

24

THIS PAGE INTENTIONALLY LEFT BLANK

25

IV. A HEURISTIC MODEL FOR DETERMINING THE
SURVIVABILITY OF THE CONNECTION

A. PE MODEL

The probability estimator model, Pe, determines the survivability of the connection

based on the number of critical edges in each edge-disjoint path between the two nodes.

An edge is critical if its failure will disconnect the path. So, the less critical edges, the

lower the probability of path disconnection.

In the Pe model, the goal is to approximate } failuresedge |1d){cut(s,Pr eK= , the

probability of connection failure given Ke number of edge failures. The connection

between the two nodes fails if and only if the edge failures disconnect all the edge-

disjoint paths. In other words, each of the edge failures must be a critical edge of a

different edge-disjoint path for the connection to fail [CHU03].

The algorithm used to compute Pe is shown in Figure 13. The Pe model has as its

core the essential idea of finding the number of critical edges,
iPC , in Path i. In the

algorithm for evaluating each augmenting path, Line 3 initializes the number of critical

edges,
iPC , to the length of the path, i. At line 4, each edge and consecutive sequence of

edges are checked for an alternative path. If an alternate path is found then the sequence

of edges between the ends of the alternate paths, vertices u and v, are not critical,

therefore,
iPC is decreased by the value equal to the distance between Vertex u and

Vertex v. With the critical edges for each path known, Pe can be computed from the

Equation (2).

∏
= +−

×=
e

i

K

i

P

iE

C

1
 e)

1
(!K Pe (2)

26

Figure 13. Pseudo code for Pe computation

This computation is exact for graphs where alternative paths for edge-disjoint

paths do not exist. However, in networks that are at least partially meshed, this will rarely

be the case and this is why Pe is an approximation for the probability Pr .

The Pe model as a heuristic was tested for graphs that have less than 12 nodes and

results were verified in [CHU03]. The Pe model appeared to be more accurate than other

heuristics developed before it, having an accuracy of almost 92% in determining the best

node in a network to host a critical server.

B. ASSUMPTIONS OF THE PE MODEL

The heuristic model, Pe, introduced above, works under two assumptions:

27

1. The failures have uniform distribution.

2. Nodes have independent failures.

This means that the computation of the Pe is exact if you have independent and

uniformly distributed failures, which is rarely the case. The validity of these assumptions

is considered below.

1. Validation of the Underlying Assumptions

In Chapter III, two criteria were given to compare and rank the nodes of a

network. These were:

1. Network survivability metric based on the edge-connectivity factor (Ke).

2. Probability of failure of a link given Ke number of edge failures.

Given Ke number of failures, one can always rank the nodes in a network as

discussed in Chapter III Section C. However, it was shown that

} failuresedge |1d),{cut(sP 1r eK= may not predict

} failuresedge 1) (|1d),{cut(sP 1r += eK . The example used is shown in Figure 14. In this

example, it was determined that ranking among nodes does not stay the same if the

number of failures exceeds Ke.

Figure 14. The graph used to verify Pe model

28

In Figure 15, s1 (source node), selected as Node 6, is to be compared to s2, which

is Node 7. (See Figure 17 for s2) The two selected nodes have the same number of Ke,

equal to two. Therefore, the second criteria must be evaluated, requiring that the

minimum number of cut sets, min-cuts, given Ke failures, be computed. Execution of the

simulation program determined that s1 has 5 min-cuts and s2 has 5 min-cuts. Therefore,

according to Pe model, one would think that the two nodes would be ranked the same.

However, if the number of failures exceeds Ke, three in this example, the simulation

program determined that s1 has 58 cut sets and s2 has 62 cut sets, which means the ranking

of the nodes should not be the same.

Figure 15. s1 = 6 (source), t =0 (Destination)

Figure 16. Shows the min-cut computation for s1

29

Figure 17. s2 =7 (source) and t=0 (destination)

As a result, a connectivity-based survivability metric, developed in [AKT03] was

used and the heuristic developed in [CHU03] was evaluated. This heuristic is used to

compare the connection reliability of two nodes to a common destination node when

these two nodes have the same number of edge-disjoint paths to that destination. It is

based on estimating the probability of each of the nodes being cut from the server given

same number of link failures. The topology in Figure 14 was used to validate and refine

this heuristic.

The simulation results show that the statement,

If } failuresedge |1d),{cut(sP 1r eK= < } failuresedge |1d),{cut(sP 2r eK=

then } failuresedge |1d),{cut(sP 1r n= < } failuresedge |1d),{cut(sP 2r n=

where n > Ke, may not be always true. This result implies that, while using the Pe model,

the ranking of the nodes may not stay the same, given that the number of failures is more

than Ke.

30

THIS PAGE INTENTIONALLY LEFT BLANK

31

V. A REALISTIC APPROACH FOR NETWORK
SURVIVABILITY

A. LIMITATIONS OF THE EXISTING FAILURE MODELS

The survivability computations presented in the previous chapters, from a

mathematical point of view, assume that:

1. All failures are equally likely.

2. The failures are mutually independent.

These assumptions do not adequately reflect the nature of real world network

environments. Typically, different nodes or links can have different failure probabilities.

More important, real systems show correlated failures. Correlated faults can result in

reduced system reliability and availability [http://oceastore.cs.berkeley.edu, September

2003].

Server failures may be correlated because they share network routers, software

bugs, configuration problems, operating systems, etc. Failure independence of the nodes

in a network may be searched and a set of independent nodes may be modeled. Then

selective use of resources from among these independent sets can be implemented to

fight against correlation of failures. This can be achieved by grouping highly correlated

nodes together and consider each group a single domain. The means to model and

compute the probability of failure of individual correlated domains remains unsolved

because of complex conditional probability computations involved. Therefore, our focus

is relaxing Assumption 2 above by computing all failure probabilities within the network

while including correlated failures. This is likely a more realistic metric for network

administrators. The next section explains the algorithm used to compute the probability

of failures for correlated components.

B. COMPUTING CORRELATED COMPONENT FAILURES

In a graph, one first needs to know the entire node-disjoint cut-sets that disconnect

paths between s and d. Given the probability of failures, one must then compute the

probability of s-d being cut by attacking the problem in a brute-force manner, since there

32

is not a way of modeling dependent node failures as independent failures. If all the

failures can be viewed as independent failures, then computing

} failureedge |1}d){cut(s,Pr eK== would be trivial by simply multiplying the

probability values given.

The heart of the algorithm is to compute the probability of all the node cut-sets.

Without loss of generality, let us assume there are a total of four cut-sets. Consider the

recursion given in Equation (3) below:

P (A ∪ B ∪C ∪D) = P (A) + P (B ∪C ∪D) – P (A n (B ∪C ∪D)) (3)

where A, B, C, and D represent the node cut sets.

The equation above is a result of the well-established Equation:

P (A ∪B) = P (A) + P (B) – P (An B) (4)

Equation (3) can be solved recursively by the following equation:

P (A ∪B ∪C ∪D) = P (A) + P (B ∪C ∪D) – P ((AB) ∪ (AC) ∪ (AD)) (5)

where AB, AC or AD may include correlated component failures.

A basic Java implementation of this approach can be found in the Appendix. In

the implementation node cut-sets that disconnect the source node and destination node

are stored in an array of vectors, depicted as “N []” in Figure 18. Independent node

failures, dependent node failures, and their corresponding values are stored in a hash

table. The recursive computation given in Equation (5) is implemented in the procedure

called findProbability (N []). The pseudo-code for this algorithm is given in Figure 18.

33

double findProbability((Vector N[])
{
 //base case
 if (N.length = = 1)

 double p1=1.0
 if (failures of some nodes of N[0] are correlated)
 double prob get the joint failure probability of corresponding

nodes from the probability table

 N4[] N[0] – {correlated nodes}
 return p1 * prob * findProbability(N4)

 else //In this case : failures of all nodes are independent
 //then simply get the node probabilities and multiply them
 all

 for (each node in N[0])
 prob get failure probability of the node from the
 probability table

 p1 p1* prob
 return p1

 else // now N.length > 1
 //initialize vectors for recursive computation

 Vector N1[]
 Vector N2[]
 Vector N3[]

 N1 = N[0] //only the first vector
 N2 = { N[1], N[2], ……, N[n] } //removal of the first vector
 N3 = { N[0].N[1], N[0].N[2],…., N[0].N[n] } //cross product of N1 and

N2

 Return

 findProbability(N1) + findProbability(N2) + findProbability(N3)

Figure 18. findProbability procedure pseudo code

34

A basic topology example used to run and verify the results of the program is

given in Figure 19.

 2 3

 1 6

 4 5

Figure 19. Example topology to verify java implementation of algorithm

In this example, Node 1 is the source node and Node 6 is the destination node.

Nodes 2 and 3 are dependent nodes, as are Nodes 4 and 5. This means if Node 2 fails it

increases the probability of the failure of Node 3. Node cut sets of this example are: {

[2,5], [2,4], [3,4], [3,5] }.

The following probability values given:

P(2|3) = 0.3 (this is the conditional probability value because 2 and 3 are
dependent nodes)

P(4|5) = 0.5
P(2) = 0.4
P(3) = 0.3
P(4) = 0.4
P(5) = 0.4

The result for this graph P(1 and 6 being cut) = 0.12 is calculated by hand

computation and verified by the Java simulation given in the Appendix.

35

VI. CONCLUSIONS AND FUTURE WORK

A. SYNOPSIS AND CONCLUSIONS

When there is an attack to a DON/DOD network, critical data servers should be

relocated based on the current situation. The solution developed by this thesis gives the

decision makers criteria that will help them relocate the servers to parts of the network

where the services are more survivable. This thesis explored this solution in the

following manner.

First, to compare and rank the nodes of a network, two criteria were used:

1. Network survivability metric based on the edge-connectivity factor (Ke).

2. Probability of failure of a link given Ke number of edge failures.

Second, an algorithm to enumerate all min-cuts and near min-cuts was introduced.

The implementations of these approaches were evaluated and tested using various graphs.

However, because of the complexity issues involved in maximum flow, min-cut

algorithms, these algorithms were practical only for certain types of networks.

Third, a heuristic model, Pe, based on edge-connectivity, (Ke), was explained. The

Pe model had previously been tested for graphs that have less than 12 nodes and the

results were verified in [CHU03]. During this research it was shown that the assumption,

If } failuresedge |1d),{cut(sP 1r eK= < } failuresedge |1d),{cut(sP 2r eK=

then } failuresedge |1d),{cut(sP 1r n= < } failuresedge |1d),{cut(sP 2r n=

(For n =1, 2, 3….where n> Ke), may not always hold.

Finally, the limitations of the current survivability metrics were discussed. The

author proposed a way to relax assumptions of the failure models. Two Java-based

programs were used to simulate the effects of node failures. The simulation results are the

computation of the connectivity factor of the nodes and the number of minimum cut-sets

of the sample network. The implementation platform for the survivability metrics was a

prototype, called the Server and Agent-based Active Network Management (SAAM)

system, which was proposed by Prof. Geoffrey Xie in 1998 and developed by graduate

36

students of NPS over the ensuing years. A Java simulation was written by the author to

verify the viability of the approach taken and to compute

} failuresedge |1d){cut(s,Pr eK= . The time frame of this research did not allow for

pertinent statistics to be gathered.

B. FUTURE WORK

Given current engineering practices, developing models that are reasonably

independent of the details of failure nodes, probabilities and correlations is difficult at

best. However, modeling dependent node failures in a way such that they can be

represented as independent node failures will ease the complexity of the computation of

} failuresedge |1d){cut(s,Pr eK= . Methods for implementing such models should be

investigated

Metrics, other than Ke, need to be established to quantify the fault tolerance,

safety, reliability, and performance of the nodes in a network.

Finally, more work needs to be done to verify and implement the proposed

algorithm for large-scale networks.

37

APPENDIX. JAVA SIMULATION CODE

import java.util.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/**

 * Title: Computer (s,t) failure probability

 * Description: Brute-force computation and working with correlated node
failures.

 * 1. Link failures have been converted into node failures by transforming the
graph.

 * 2. Correlated node failures modeled as joint failure probabilities.

 *

 * Copyright: Copyright (c) 2003

 * Company:

 * @author Ozlem Ozkok & Geoffrey Xie

 * @version 1.0

 */

public class ComputeProbability {

 private final int NUM_CUT_SETS = 4;

 private Vector nodeCutSets[] = new Vector[NUM_CUT_SETS];

 private double p;

 private Hashtable probTable;

 public ComputeProbability()

38

 {

 for (int i = 0; i < NUM_CUT_SETS; i++)

 {

 nodeCutSets[i] = new Vector();

 }

 //Known node cutsets

 //Note: The cutset are not mutually exclusive.

 nodeCutSets[0].add(new Integer(2));

 nodeCutSets[0].add(new Integer(5));

 nodeCutSets[1].add(new Integer(2));

 nodeCutSets[1].add(new Integer(4));

 nodeCutSets[2].add(new Integer(3));

 nodeCutSets[2].add(new Integer(4));

 nodeCutSets[3].add(new Integer(3));

 nodeCutSets[3].add(new Integer(5));

 //Known failure probabilities

 //Note: Failures of node 2 and 3 are correlated and so are node 4 and 5.

 probTable = new Hashtable();

 probTable.put("2.3", new Double(0.3));

 probTable.put("4.5", new Double(0.5));

 probTable.put("2", new Double(0.4));

 probTable.put("3", new Double(0.3));

 probTable.put("4", new Double(0.4));

 probTable.put("5", new Double(0.4));

39

 System.out.println(probTable);

 p = findProbability(nodeCutSets);

 }//end constructor

 private double findProbability(Vector N[])

 {

 if (N.length == 1)

 {

 System.out.println("Inside the base case " + N.toString());

 double p1 = 1.0;

 int numNodes = N[0].size();

 for (int nodeCount = numNodes; nodeCount > 1; nodeCount--)

 {

 //Now search the probTable; starting with longest key

 for (Enumeration e = probTable.keys(); e.hasMoreElements();)

 {

 String key = (String) e.nextElement();

 if (key.length() == nodeCount * 2 - 1) //account for "."

 {

 //Convert key e.g., "1.2.3" into vector {Integer(1),Integer(2),Integer(3)}

 Vector keyVector = convertToVector(key);

 //check for match

 boolean matching = false;

 System.out.print("Key Vector = " + keyVector + "; N[0] = " + N[0] +
"\n");

40

 for (int j = 0; j < keyVector.size(); j++)

 {

 matching = false;

 for (int k = 0; k < N[0].size(); k++)

 {

 if ((keyVector.get(j)).equals(N[0].get(k)))

 {

 matching = true;

 break;

 }

 }

 if (!matching)

 break;

 }

 if (matching)

 {

 if (!probTable.containsKey(key))

 {

 System.out.println("Error: Required probability variable not given for
node sequence " + key);

 }

 else

 {

 Double prob = (Double) probTable.get(key);

 //Remove corresponding nodes from N[0] since their joint probability is
found.

 //Note: their joint failure is independent of failures of the other N[0]
nodes

 Vector N4[] = new Vector[1];

 N4 = formN4(N, keyVector);

41

 return (p1 * prob.doubleValue() * findProbability(N4));

 }

 }

 else

 {

 System.out.println("No match for key: " + key + "\n");

 }

 }//end of if (key.length == ...

 }

 }

 //Now nodeCount is 1 and in this case, failures of all nodes are independent.

 //So just multiply their failure probabilities together

 System.out.println("Now failures of all nodes in N[0] are independent.\n");

 for (int i = 0; i < N[0].size(); i++)

 {

 String key = "" + N[0].get(i);

 if (!probTable.containsKey(key))

 {

 System.out.println("Error: Required probability variable not given for node
" + N[0].get(i));

 System.exit (1);

 }

 else

 {

 Double prob = (Double) probTable.get(key);

 p1 = p1 * prob.doubleValue();

42

 }

 }

 return p1;

 }

 else

 {

 Vector N1[] = new Vector[1];

 Vector N2[] = new Vector[N.length - 1];

 Vector N3[] = new Vector[N.length - 1];

 N1 = formN1(N); // subset with only the first vector

 N2 = formN2(N); // after removal of first vector

 N3 = formN3(N); // cross product of N1 and N2

 return findProbability(N1) + findProbability(N2) - findProbability(N3);

 }

 }//end method findProbability

 private Vector[] formN1(Vector temp[])

 {

 Vector N1[] = new Vector[1];

 N1[0] = temp[0];

 return N1;

 }

 private Vector[] formN2(Vector temp[])

 {

 Vector N2[] = new Vector[temp.length-1];

43

 for (int c = 1; c < temp.length; c++)

 {

 N2[c-1] = temp[c];

 }

 return N2;

 }

 private Vector[] formN3(Vector temp[])

 {

 Vector N3[] = new Vector[temp.length-1];

 for (int c = 0 ; c < temp.length - 1; c++)

 {

 N3[c] = new Vector();

 }

 for (int i = 1; i < temp.length; i++)

 {

 //Merge elements of temp[0] and temp[i] and put them into N3[i-1]

 for (int j = 0 ; j < temp[0].size(); j++)

 {

 N3[i-1].add(temp[0].get(j));

 }

 for (int k = 0; k < temp[i].size(); k++)

 { //no duplicate is added

 if (!N3[i-1].contains(temp[i].get(k)))

 {

 N3[i-1].add(temp[i].get(k));

 }

44

 }

 }

 return N3;

 }

 private Vector [] formN4(Vector temp[], Vector removeVector)

 {

 Vector N4[] = new Vector[1];

 N4[0] = new Vector();

 for (int count = 0 ; count < temp[0].size(); count++)

 {

 Integer temporary = (Integer) temp[0].get(count);

 System.out.println("N4[0] = " + N4[0] + "; temporary = " + temporary);

 if (!removeVector.contains(temporary))

 {

 N4[0].add(temporary);

 }

 }

 return N4;

 }

 private Vector convertToVector(String key)

 {

 Vector v = new Vector();

 StringTokenizer token = new StringTokenizer(key,".");

45

 while (token.hasMoreTokens())

 {

 Integer id = Integer.decode(token.nextToken());

 v.add(id);

 }

 System.out.println("Key = " + key + " ; new vector = " + v.toString());

 return v;

 }

 public String toString()

 {

 return "(s, t) Cut Probability = " + p;

 }

 public static void main(String args[])

 {

 ComputeProbability test = new ComputeProbability();

 System.out.println(test.toString());

 }//end main

}//end ComputeProbability

46

THIS PAGE INTENTIONALLY LEFT BLANK

47

LIST OF REFERENCES

[AKT03] Baris Aktop, A Framework for Maximizing Survivability of Network
Dependent Services, Master’s Thesis, Naval Postgraduate School, Monterey,
California, March 2003

[CHU03] Eng Hong Chua, Determine Network Survivability Using Heuristic

Models, Master’s Thesis, Naval Postgraduate School, Monterey, California, March
2003

[CEB98] Arthur K. Cebrowski, John J. Garstka, Network Centric Warfare :Its

Origin and Future, U.S. Naval Institute Proceedings, 1998

[DES02] Paul Desmond, Experts Warn of Cyber Attacks,
www.itmanagement.eathweb.com, March 2002

[DIE01] S. Dietrich and PYA Ryan, The Survivability of Survivability, Software

Engineering Institute Carnegie Melon University, September 2001

[ELL99] Robert J. Ellison, David A. Fisher, Richard C. Linger, Howard F. Lipson,

Thomas A. Longstaff, Nancy R. Mead, Survivability: Protecting Your Critical
Systems, CERT Coordination Center Software Engineering Institute Carnegie Melon
University, 1999

[FIS99] David A. Fisher, Howard F. Lipson, Emergent Algorithms: A New Method

for Enhancing Survivability in Unbounded Systems, Software Engineering Institute
Carnegie Melon University, 1999

[JHA00] Jha, S. and Wing, J. M., “Survivability Analysis of A Networked System”,

Proceedings of the 23rd International Conference of Software Engineering, pp. 307-
317, July 2001

[LAW00] Cliff Lawson, TID, The Weaponer, December 2000

[MEA00] Mead N. R. et al., “Survivable Network Analysis Method”, Technical

Report, Carnegie Mellon Software Engineering Institute, CMU/SEI-2000-TR-013,
September 2000

[SHI01] Timothy Shimall, Countering Cyber War, NATO Review, Winter 2001

[SUL99] Sullivan, K. et al., “Information Survivability Control Systems”,

Proceedings of 1999 International Conference of Software Engineering (ICSE 99),
pp. 184-192, Los Alamitos, May 1999

48

[UMA01] Umar, A. et al., “Intrusion Tolerant Middleware”, Proceedings of DARPA
Information Survivability Conference and Exposition (DISCEX 01) vol. 2, 2001

[WEL00] Wells, D. et al., ”Software Survivability”, Proceedings of DARPA

Information Survivability Conference and Exposition (DISCEX 01) vol. 2, 2000

[WOO00] R. Kevin Wood, Ahmet Balcioglu, Enumerating Near-Min S-T Cuts in

Network Interdiction and Stochastic Integer Programming, ed. Woodruff, D.L.,
Kluwer Academic Publishers, 2003, pp. 21-49.

[XIE98] Geoffrey G. Xie, SAAM: An Integrated Network Architecture for

Integrated Services, IEEE, 1998

[XIE02] Geoffrey G. Xie, CY03 Homeland Security Research & Technology

Research Proposal: “Critical Infrastructure Protection: Maximize Survivability of a
Network Dependent Service,” 2002

[YUR99] William Yurcik, Adaptive Multi-Layer Network Survivability: A Unified
Framework for Countering Cyber Terrorism, Telecommunications Program
University of Pittsburgh, 1999

49

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Geoffrey Xie
Department of Computer Science
Naval Postgraduate School
Monterey, California

4. Professor Alex Bordetsky
Department of Information Sciences
Naval Postgraduate School
Monterey, California

5. Deniz Kuvvetleri Komutanligi
Kutuphane
Bakanliklar, Ankara, TURKEY

6. Deniz Harp Okulu Komutanligi
Kutuphane
Tuzla, Istanbul, TURKEY

7. Bilkent Universitesi Kutuphanesi
Bilkent, Ankara, TURKEY

8. Orta Dogu Teknik Universitesi Kutuphanesi
Balgat, Ankara, TURKEY

9. Bogazici Universitesi Kutuphanesi
Bebek, Istanbul, TURKEY

